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Orthogonal-unitary and symplectic-unitary crossover ensembles of random matrices are relevant in many
contexts, especially in the study of time reversal symmetry breaking in quantum chaotic systems. Using
skew-orthogonal polynomials we show that the same generic form of n-level correlation functions are obtained
for the Jacobi family of crossover ensembles, including the Laguerre and Gaussian cases. For large matrices we
find universal forms of unfolded correlation functions when expressed in terms of a rescaled transition param-
eter with arbitrary initial level density.
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Random matrices have found applications in a wide class
of systems exhibiting a broad range of behavior �1–5�. The
Gaussian ensembles of random Hermitian matrices have
turned out to be particularly useful and have been studied
extensively and applied successfully to many systems. In re-
cent years, however, non-Gaussian random matrix ensembles
have drawn considerable amount of attention. The reason
behind this is that, apart from the mathematical interest of
extending the results known for Gaussian ensembles to the
non-Gaussian ones, they turn out to be of great importance in
studying physical systems where these appear naturally and
hence are more appropriate in modeling the system. For ex-
ample, the Laguerre �or Wishart� ensembles comprise non-
negative definite matrices of the type A†A �or AA†� where
A is a rectangular Gaussian random matrix �5,6�. Communi-
cation theory �7,8�, amorphous systems �9,10�, and multi-
variate analysis of chaotic time series �11� are a few ex-
amples where Laguerre ensembles of random matrices
appear. Jacobi ensembles are generalizations of Gaussian and
Laguerre ensembles and serve, inter alia, as models for
transmission matrices in quantum transport problems �4,12�.
Depending on the invariance under orthogonal, symplectic,
and unitary transformations the ensembles are referred to as
orthogonal �OE�, symplectic �SE�, or unitary �UE�, the first
two being applicable to time reversal invariant �TRI� systems
and the last to time reversal noninvariant systems �1–5�. The
corresponding Gaussian ensembles are abbreviated as GOE,
GSE, and GUE, the Laguerre ensembles as LOE, LSE, and
LUE, and the Jacobi ensembles as JOE, JSE, and JUE. Our
purpose in this work is to study non-Gaussian ensembles of
random Hermitian matrices which interpolate between en-
sembles with orthogonal invariance and unitary invariance.
The crossover is governed by a parameter � with �=0 for the
orthogonal case and �=� for the unitary case. We similarly
study symplectic-unitary crossover, again as a function of the
parameter �. These ensembles serve as models for systems
with partial TRI breaking. In applications to quantum chaotic
systems, � is a measure of TRI breaking, �=0 being the TRI
case. There are also applications in other systems mentioned

above �4,8–10�. The Gaussian ensembles with the same
�OE-UE and SE-UE� crossovers have been studied earlier
�13� and applied to nuclear spectra �14� and to spectra of
quantum chaotic systems �15�. See also �16� for the same
transitions in the circular ensembles.

We consider here the problem of �OE-UE and SE-UE�
crossovers in Laguerre and Jacobi ensembles. We find that
the expression for the joint-probability density �jpd� of the
eigenvalues for these transitions has a generic form appli-
cable to all crossover ensembles belonging to the Jacobi fam-
ily. We give exact compact expressions for the jpd of eigen-
values and n-level correlation functions for finite-
dimensional matrices. This includes results for the skew-
orthogonal polynomials appropriate to the transitions which
are generalizations of those studied earlier �17�. We also pro-
pose a method for obtaining directly the large dimensionality
limits of the unfolded two-point kernels and n-level correla-
tion functions. The unfolded results are found to be the same
as those in Gaussian and circular cases with the rescaled
transition parameter � now appropriate to the Laguerre and
Jacobi ensembles. We stress that the results are independent
of the initial level density, as the latter affects only the un-
folding function of the spectrum and the rescaling of the
parameter. Finally we discuss briefly applications of these
ensembles to some of the systems mentioned above.

We consider N-dimensional Hermitian matrices with ei-
genvalues xj where j=1, . . . ,N. The eigenvalues satisfy �
�xj �−�, xj �0, and 1�xj �−1 for Gaussian, Laguerre,
and Jacobi ensembles, respectively. We define the
�-dependent jpd, P����P�x1 , . . . ,xN ;��, using Dyson’s
Brownian motion model �6,18–20�. We have �P��� /��
=−LP���, where L is the Fokker-Planck operator with equi-
librium jpd Peq�Peq�x1 , . . . ,xN�. The similarity transforma-
tion �=Peq

−1/2P and H=Peq
−1/2LPeq

1/2 leads to the evolution
equation of � involving Calogero-Sutherland-type Hamilto-
nians �21,22� for the ensembles mentioned above �20�. The
ground state of H is nondegenerate with zero energy so that
Peq exists. For transitions to UE, the interaction term disap-
pears and then H can be expressed as the sum of N single-
particle Hamiltonians Hx representing noninteracting fermi-
ons. Thus H=� j=1

N Hxj
−E0. Here E0 is the ground-state

energy of the N-fermion system. The Hx are non-negative
definite operators and for the Gaussian, Laguerre, and Jacobi
ensembles are, respectively �4,6,12,20�,
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Hx
G = −

1

2
� �2

�x2 − x2 + 1� , �1�

Hx
L = −

1

2
�x

�2

�x2 +
�

�x
− x −

�2a + 1�2

4x
+ 2a + 2� , �2�

Hx
J = − ��1 − x2�

�2

�x2 − 2x
�

�x
−

	a − b + �a + b + 1�x
2

�1 − x2�

+ �a + b + 1�� , �3�

where a�−1, b�−1 in �2� and �3�. For example, 2a+1
=N�−N�0 in �2� for transitions corresponding to the La-
guerre ensembles A†A, where A is N��N dimensional.
Here the matrix elements of A�A��� are independent com-
plex Gaussian variables with zero mean and same variance.
For the OE-UE transition the real and imaginary parts are
also independent and have the variances �1+e−�� /4 and �1
−e−�� /4, respectively. For the SE-UE transition, the same
properties are valid with quaternion real and quaternion
imaginary parts.

Using the Fokker-Planck operator L, we have, for any
arbitrary initial jpd P�0�,

P��� = e−L�P�0� = Peq
1/2e−H�Peq

−1/2P�0� . �4�

This expression governs the transition from any arbitrary ini-
tial jpd to the jpd corresponding to UE as the final or equi-
librium density and can be efficiently utilized to solve the
problems of OE-UE and SE-UE transitions. In �4� Peq cor-
responds to the jpd of UE,

Peq 	 �
N�2�
j=1

N

weq�xj� , �5�

where weq is the square of the ground-state wave function of
Hx and 
N=� j�k�xj −xk� is the Vandermonde determinant.
For the three ensembles, weq is given by

weq�x� = 
e−x2
for GUE,

x2a+1e−2x for LUE,

�1 − x�2a+1�1 + x�2b+1 for JUE.
� �6�

In the SE-UE transition N is even because the eigenvalues
are doubly degenerate for �=0 �Kramers’ degeneracy�. We
consider here N as even for OE-UE transition also. The ini-
tial jpd of eigenvalues is

P�0� 	 
NPf�G�0��xj,xk���
i=1

N

w�xi� . �7�

Here j, k=1,2 , . . . ,N, w�x� is the initial weight function with
boundary conditions similar to those for weq�x�,

G�0��x,y� = ���x − y� for OE,

− 
��x − y� for SE,
� �8�

2��x� is the sign of x, and Pf�B� is the Pfaffian of antisym-
metric matrix B. Then the Pfaffian of G�0��x ,y� along with 
N

leads to the factor of �
N� for OE, whereas for SE it gives rise
to �
�N/2��4 along with the 
 functions for the degeneracy
�1,13,16�. Using �4� and �5� and the expansion of Pfaffians
�1�, we get the jpd for arbitrary �,

P��� 	 eE0�
N Pf�G����xj,xk���
i=1

N

w�xi� . �9�

Here G��� is defined in terms of one-body operator Ox,

G����x,y� = OxOyG�0��x,y� , �10�

Ox =
�weq�x�

w�x�
e−Hx� w�x�

�weq�x�
. �11�

We now introduce the skew-orthogonal polynomials
qj

����x�, the weighted polynomials � j
����x�=w�x�qj

����x�, and
the integrated functions � j

����x�. With j,k=0,1 ,2 , . . ., we have

� � j
����x��k

����x�dx = Zjk, �12�

� j
����x� =� G����x,y�� j

����y�dy , �13�

where Zjk=−Zkj equals 1 for k= j+1 with j even, −1 for k
= j−1 for j odd, and 0 for �j−k��1. �The integrand in �12�
should be antisymmetrized in the symplectic case when w�x�
diverges.� Note that the polynomials are skew orthogonal
because G��� is antisymmetric. For �=0, �12� and �13� give
back the OE and SE definitions �1,17�. We can show from
�12� and �13� that

G��� = �
�=0

�

��2�
����x��2�+1

��� �y� − �2�+1
��� �x��2�

����y�� , �14�

and then, using �10� and �12�, we obtain

� j
����x� = Ox� j

�0��x�, � j
����x� = �Ox

†�−1� j
�0��x� . �15�

These functions can be calculated using the spectral decom-
position of Hx.

With special choices of the initial weight function we get
compact expressions for � j

����x� and � j
����x�, similar to those

for �=0 �17�. The choice w�x�=wa�x��xae−x is appropriate
for the LOE-LUE transition. We find, with �0�x� given by
�15�,

�2�
����x� = e2��2a+1/2

�2�

wa�x�L2�
�2a+1��2x� , �16�

�2�
����x� = e−�2�−1��2a+3/2

�2�

wa+1�x�
2�

L2�−1
�2a+1��2x�

+
�2�−2

�2�

2� + 2a

2�
�2�−2

��� �x� �� � 0� , �17�

�2�+1
��� �x� = e2��2a+1/2

�2�

wa�x��e��2� + 1�L2�+1
�2a+1��2x�

− e−��2� + 2a + 1�L2�−1
�2a+1��2x�� , �18�
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�2�+1
��� �x� = e−2��2a+3/2

�2�

wa+1�x�L2�
�2a+1��2x� . �19�

Here Lj
�2a+1��x� are the associated Laguerre polynomials with

weight function w2a+1�x� and normalization hj
�2a+1�= �� j�2

=��j+2a+2� /��j+1�. The choices w�x�=e−x2/2 and �1
−x�a�1+x�b give compact results, respectively, for GOE-
GUE and JOE-JUE transitions, which, for �=0, coincide
with the results in �17�. For GSE-GUE, LSE-LUE, and JSE-
JUE transitions, the choices w�x�=e−x2/2, xa+1e−x, and �1
−x�a+1�1+x�b+1 give compact answers, respectively.

We now evaluate the n-level correlation function Rn, de-
fined by

Rn�x1, . . . ,xn;�� =
N!

�N − n�! � dxn+1 ¯ dxNP��� , �20�

where n=1,2 , . . . ,N. For this, we introduce the kernels
SN

����x ,y�, AN
����x ,y�, and BN

����x ,y� along with their � evolu-
tions. We have

SN
����x,y� = �

�=0

�N/2�−1

��2�
����x��2�+1

��� �y� − �2�+1
��� �x��2�

����y��

= �Ox
†�−1OySN

�0��x,y� , �21�

AN
����x,y� = �

�=0

�N/2�−1

��2�+1
��� �x��2�

����y� − �2�
����x��2�+1

��� �y��

= �Ox
†�−1�Oy

†�−1AN
�0��x,y� , �22�

BN
����x,y� = �

�=�N/2�

�

��2�
����x��2�+1

��� �y� − �2�+1
��� �x��2�

����y��

= OxOyBN
�0��x,y� . �23�

Then, using Dyson’s theorems �1,23�, the n-level correlation
function can be expressed as a quaternion determinant
�Qdet�,

Rn�x1, . . . ,xn;�� = Qdet������xj,xk�� j,k=1,. . .,n, �24�

where, for both transitions, �����x ,y� is given by

�����x,y� = �SN
����x,y� AN

����x,y�
BN

����x,y� SN
����y,x�

� . �25�

For large N, the level density R1�x ;��=SN
����x ,x� under-

goes a smooth transition from �=0 to �=� as a function of �
�or N� in some cases�. However, the unfolded correlation
functions Rn�r1 , . . . ,rn�=Rn�x1 , . . . ,xn� /R1�x1�¯R1�xn�,
where xj =x+rj /R1�x�, undergo the transition for much
smaller �, given by �26� below. Consider r= �x−y�R1�x�
where R1�x��R1�x ;0� is the level density corresponding to
the initial ensemble. For large N we have Hx−Hy �0 and
Hx+Hy �2f�x�R1

2�x��2 /�r2, where f�x�=−1 /2,−x /2,−�1
−x2� for Gaussian, Laguerre, and Jacobi cases, respectively,
and is the factor appearing with the �2 /�x2 term in Hx. Let

� = �− �f�x�R1�x� . �26�

For large N, SN
��� /R1�x� in �21� becomes independent of � and

has the limit

S�r� =
sin �r

�r
=

1

�
�

0

�

cos kr dk �27�

for both transitions. On the other hand, AN
��� / �R1�x��2 and BN

���

have the limits

A�r;�� = e−2�2�2/�r2
A�r;0� , �28�

B�r;�� = e2�2�2/�r2
B�r;0� . �29�

We use OE and SE results �1,13,17� for �=0. Thus, we find

A�r;�� = −
1

�
�

0

�

k sin kr e2�2k2
dk , �30�

B�r;�� = −
1

�
�

�

� sin kr

k
e−2�2k2

dk �31�

for OE-UE transitions. Similarly we obtain

A�r;�� = −
1

�
�

0

� sin kr

k
e2�2k2

dk , �32�

B�r;�� = −
1

�
�

�

�

k sin kr e−2�2k2
dk �33�

for SE-UE transitions. For both transitions

Rn�r1, . . . ,rn;�� = Qdet���rj − rk;��� j,k=1,. . .,n, �34�

��r;�� = � S�r� A�r;��
B�r;�� S�r� � . �35�

These results are the same as those for the Gaussian and
circular ensembles �13,16�. Note that the two-level cluster
function is given by Y2�r�=1−R2=S2−AB where r=r1−r2.
The number variance and other two-point fluctuation mea-
sures derive from Y2 and have been used in the study of TRI
breaking in complex nuclei �14� and quantum chaotic sys-
tems �15�. We believe that a similar transition will be ob-
tained in the vibrational spectra of amorphous clusters
�9,10�. In some of these applications Laguerre ensembles are
a priori more appropriate.

In the study of quantum transport in �mesoscopic� chaotic
cavities, the transmission eigenvalues Tj after the transforma-
tion xj =2Tj −1 are described by the Jacobi ensembles �4,12�.
For the JOE-JUE transition the weight function changes
from �1+x�b to �1+x�2b+1, where 2b+1= �N1−N2� and N
=min�N1 ,N2�. Here N1 and N2 are the number of incoming
and outgoing channels. Again the � and � functions can be
found explicitly using the above operator method and all
quantities of relevance for conductance fluctuations �4� can
be derived as a function of the TRI breaking parameter � for
arbitrary N1,N2. For example, the variance of conductance is
given by �1+e−2�N1+N2����N1

2N2
2 / �N1+N2�4� for large N1 and
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N2. Our results agree with those in �4� for �=0,�. We also
remark that it should be possible to derive a long-range two-
point correlation function analogous to those given in �24�
for the transitions also. In fact such an expansion has already
been given for transitions in the Gaussian ensembles �2,14�.
Finally, our LOE-LUE transition results are directly appli-
cable in the calculation of the Shannon capacity of a
multiple-input–multiple-output communication channel �8�
for an arbitrary number of transmitting and receiving
antennas.

To conclude, we have shown that the method of skew-
orthogonal polynomials is valid for a large class of OE-UE
and SE-UE transitions. The polynomials can be calculated

from those for the initial ensembles in terms of one-body
operators. Our large-N results prove the universality of spec-
tral correlations in the crossover ensembles of the Gaussian,
Laguerre, and Jacobi types with arbitrary initial level density
in terms of a single parameter �. �Generalizations to arbitrary
initial level density can also be done for the circular en-
sembles.� The finite-N results are useful in communication
theory �7,8� and mesoscopic quantum transport problems �4�,
and the large-N results are useful in quantum chaos studies
�14,15�. Details of this work will be given elsewhere �25�.
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